Charge-carrier states and light absorption in ordered quantum dot superlattices

نویسنده

  • A. A. Balandin
چکیده

We have theoretically investigated the electron and hole energy spectra and light absorption in the threedimensionally ordered quantum dots superlattices QDS made of the direct band-gap semiconductors. The calculations were performed for QDS of the rhombic symmetry with a substantial electron hole wavefunction overlap using a one-band Hamiltonian for the electrons and six-band Hamiltonian for the holes. The obtained results were compared with the predictions of the simplified models for the uncoupled heavy, light, and split-off holes. It has been shown that the energy spectra of the electrons and holes in the ordered QDS are distinctively different from those in the single quantum dots QD or conventional quantum-well superlattices. The charge-carrier dispersion and localization are very sensitive to the quasicrystallographic directions defined by the dots, which play a role of the atoms in such QD supracrystal. We found that in the ordered QDS the oscillator strength for the interband optical transitions can be high for a relatively wide range of the photon energies. The obtained results are important for the proposed applications of QDS in solar cells, photodetectors, and thermoelectrics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time-dependent analysis of carrier density and potential energy in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD)

Interaction and correlation effects in quantum dots play a fundamental role in defining both their equilibrium and transport properties. Numerical methods are commonly employed to study such systems. In this paper we investigate the numerical calculation of quantum transport of electrons in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD). The simulation is based on the imaginary time...

متن کامل

Time-dependent analysis of carrier density and potential energy in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD)

Interaction and correlation effects in quantum dots play a fundamental role in defining both their equilibrium and transport properties. Numerical methods are commonly employed to study such systems. In this paper we investigate the numerical calculation of quantum transport of electrons in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD). The simulation is based on the imaginary time...

متن کامل

Introducing nanostructure patterns for performance enhancement in PbS colloidal quantum dot solar cells

With attention to the thin film structure of colloidal quantum dot solar cells, in this paper in order to improvement of active layer absorption of them, we have proposed the use of nanostructure pattern for enhancement of their performance. For this purpose we have presented suitable nano hemisphare patterns in colloidal quantum dot solar cells for light trapping in absorption layer. Then with...

متن کامل

Quantum current modeling in nano-transistors with a quantum dot

Carbon quantum dots (CQDs) serve as a new class of ‘zero dimensional’ nanomaterial’s in thecarbon class with sizes below 10 nm. As light emitting nanocrystals, QDs are assembled from semiconductormaterials, from the elements in the periodic groups of II-VI, III-V or IV-VI, mainly thanks to impacts of quantum confinement QDs have unique optical properties such as brighter, highly pho...

متن کامل

ZnO nanowire arrays for enhanced photocurrent in PbS quantum dot solar cells.

Vertical arrays of ZnO nanowires can decouple light absorption from carrier collection in PbS quantum dot solar cells and increase power conversion efficiencies by 35%. The resulting ordered bulk heterojunction devices achieve short-circuit current densities in excess of 20 mA cm(-2) and efficiencies of up to 4.9%.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007